
 
 

 

 

Abstract— The support vector machine is a powerful classi-
fier that has been successfully applied to a broad range of pat-
tern recognition problems in various domains, e.g. corporate 
decision making, text and image recognition or medical diagno-
sis. Support vector machines belong to the group of semi-
parametric classifiers. The selection of appropriate parameters, 
formally known as model selection, is crucial to obtain accurate 
classification results for a given task. Striving to automate 
model selection for support vector machines we apply a meta-
strategy utilizing genetic algorithms to learn combined kernels 
in a data-driven manner and to determine all free kernel pa-
rameters. The model selection criterion is incorporated into a 
fitness function guiding the evolutionary process of classifier 
construction. We consider two types of criteria consisting of 
empirical estimators or theoretical bounds for the generaliza-
tion error. We evaluate their effectiveness in an empirical study 
on four well known benchmark data sets to find that both are 
applicable fitness measures for constructing accurate classifiers 
and conducting model selection. However, model selection fo-
cuses on finding one best classifier while genetic algorithms are 
based on the idea of re-combining and mutating a large num-
ber of good candidate classifiers to realize further improve-
ments. It is shown that the empirical estimator is the superior 
fitness criterion in this sense, leading to a greater number of 
promising models on average. 

I. INTRODUCTION 
HE support vector machine (SVM) is a prominent clas-
sifier that has been introduced by Vapnik and co-

workers in 1992 [1, 2]. In subsequent years the technique 
has received considerable attention in various application 
domains. Promising results have been obtained for e.g. 
medical diagnosis [3, 4], text and image recognition [5, 6] or 
the support of corporate decision making [7, 8].  

SVMs are supervised learners that construct a model from 
available training data with known classification. In order to 
obtain accurate class predictions SVMs provide a number of 
free parameters that have to be tuned to reflect the require-
ments of the given task. We will use the term model to refer 
to a specific classifier, e.g. a SVM with specified kernel and 
kernel parameters. 

The process of parameter fitting is known as model selec-
tion aiming at finding a model which will give minimum 
prediction error when being applied to classify unseen ex-
amples that originate from the same source as the training 
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data. Since this true generalization performance is inaccessi-
ble we have to rely on appropriate estimators. 

Within the scope of SVM model selection we can distin-
guish two major methodologies. The empirical approach to 
model selection involves estimating the generalization error 
by re-sampling techniques such as disjoint hold-out sets or 
cross-validation (CV) while theoretical approaches consist 
of constructing and minimizing algebraic bounds for the 
generalization error. 

In this work, we propose a meta-strategy utilizing a ge-
netic algorithm (GA) for model selection striving to deter-
mine all properties of the classifier in a solely data-driven 
manner. A particular classifier is assessed on the basis of its 
fitness that reflects arbitrary model selection criteria. Conse-
quently, the fitness is the proxy for generalization error and 
is used to guide the evolutionary process of SVM model 
construction. We consider the CV performance as a popular 
empirical estimator for generalization error and the ratio of 
support vectors and data instances as a classical algebraic 
bound. Their effectiveness is contrasted in an empirical 
study using four well known benchmark data sets. 

The remainder of the paper is organized as follows. Sec-
tion II provides an introduction to SVMs while we review 
previous work on SVM model selection in Section III. Our 
GA based approach is presented in Section IV. The numeri-
cal results of an experimental study are described in Sec-
tion V. Conclusions are given in Section VI. 

II. SUPPORT VECTOR MACHINES 
The SVM can be characterized as a supervised learning 

algorithm capable of solving linear and non-linear binary 
classification problems. Given a training set with m patterns 

1{( , )}m
i i iy =x , where X n

i ∈ ⊆ ℜx  is an input vector and 
{ 1, 1}iy ∈ − +  its corresponding binary class label, the idea of 

support vector classification is to separate examples by 
means of a maximal margin hyperplane [9]. Therefore, the 
algorithm strives to maximize the distance between exam-
ples that are closest to the decision surface. The margin of 
separation is related to the so called Vapnik-Chervonenkis 
dimension (VCdim) which measures the complexity of a 
learning machine [10]. The VCdim is used in several bounds 
for the generalization error of a learner and it is known that 
margin maximization is beneficial for the generalization 
ability of the resulting classifier [11]. To construct the SVM 
classifier one has to minimize the norm of the weight vector 
w under the constraint that the training patterns of each class 
reside on opposite sides of the separating surface; see Fig. 1. 
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Fig. 1: Linear separation of two classes -1 and +1 in two-dimensional space 
with SVM classifier [12]. 
 

Since { 1, 1}iy ∈ − +  we can formulate this constraint as  
 (( ) ) 1,  i iy b i = 1,...,m.⋅ + ≥w x  (1) 
 

Examples which satisfy (1) with equality are called sup-
port vectors since they define the orientation of the resulting 
hyperplane. 

To account for misclassifications, e.g. examples where 
constraint (1) is not met, the soft margin formulation of 
SVM introduces slack variables iξ ∈ℜ  [9]. Hence, to con-
struct a maximal margin classifier one has to solve the con-
vex quadratic programming problem (2): 

1

1min

. . :  (( ) ) 1 - ,  

m

w,b, i
i

i i i

C
2

s t y b i = 1,...,m.

ξ ξ

ξ
=

+

⋅ + ≥

∑w

w x
 (2) 

C is a tuning parameter which allows the user to control 
the trade off between maximizing the margin (first term in 
the objective) and classifying the training set without error. 
The primal decision variables w and b define the separating 
hyperplane, so that the resulting classifier takes the form 

( )( ) ( * ) ,y sgn b*= ⋅ +x w x  (3) 

where w* and b* are determined by (2). 
Instead of solving (2) directly, it is common practice to 

solve its dual (4): 

1 , 1

1
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=
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∑ ∑

∑
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 (4) 

 

In (4), ia denotes the Lagrange variable for the ith constraint 
of (1). Since the input vectors enter the dual only in form of 
dot products the algorithm can be generalized to non-linear 
classification by mapping the input data into a high-
dimensional feature space via an a priori chosen non-linear 
mapping function Φ . Constructing a separating hyperplane 
in this feature space leads to a non-linear decision boundary 
in the input space. Expensive calculation of dot products 

( ) ( )i jΦ ⋅Φx x in a high-dimensional space can be avoided 
by introducing a kernel function K (5):  

( , ) ( ) ( )i j i jK = Φ ⋅Φx x x x . (5) 
We obtain the general SVM classifier (6) with decision 
function (7): 

( )
1 , 1
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( ) sgn ( , )
m

i i i
i=1

y y K b⎛ ⎞
= +⎜ ⎟

⎝ ⎠
∑x a x x . (7) 

This kernel trick makes SVM flexible allowing the con-
struction of special purpose kernels, e.g. for text classifica-
tion [13].  

III. APPROACHES FOR SVM MODEL SELECTION 
Regarding the final SVM formulation (6), the free pa-

rameters of SVMs to be determined within model selection 
are given by the regularization parameter C and the kernel, 
together with additional parameters of the respective kernel 
function. 

A generic approach to model selection, applicable with 
any learning algorithm, involves cross-validating a param-
eterized classifier on a sub-sample of available data that has 
not been used for training. Repetitive evaluation of a model 
on k disjoint sub-samples while the union of the remaining 
k-1 sub-samples is used to form the training set gives the 
well known CV estimate of generalization performance. We 
obtain the leave-one-out estimate [14] as a special case of 
CV by setting k = m-1. While being computationally expen-
sive the leave-one-out estimator is appealing since it uses the 
largest possible amount of training data for model building. 

For SVMs, CV-based model selection is popular in con-
junction with previously determined kernels. In particular, 
when considering only Gaussian kernels (Table 1) the num-
ber of free parameters reduces to two (regularization pa-
rameter C and kernel width). These are routinely determined 
by means of a grid-search varying the parameter settings 
with a fixed step-size through a wide range of values and 
assessing the performance of every combination [7, 15]. To 
reduce the potentially large number of parameter combina-
tions, Keerthi and Lin proposed a heuristic that starts with a 
linear kernel to determine C and subsequently executes a 
line search to find promising candidates for the parameters 
of a Gaussian SVM [16]. 

Due to extensive re-sampling and re-training of the classi-
fier, these empirical techniques, and the calculation of the 
leave-one-out estimate in particular, are expensive. A com-
putationally more feasible alternative is to construct alge-
braic bounds for the generalization error, or the leave-one 
out estimate respectively, which are easier to calculate. Us-
ing this approach, model selection is accomplished by as-
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sessing a classifier’s capability to minimize these bounds. 
For SVMs, the task of developing classifier specific 

bounds has received considerable attention in the literature; 
e.g. [1, 17-19], see [20] for comparisons. For example, (8) 
describes a simple bound T for the leave-one-out error, 
given by the ratio of support vectors ( # SV ) to the number 
of training examples [11]: 

# .SVT
m

=  (8) 

This bound is inspired by the idea that removing a non-
support vector from the training set does not change the op-
timal solution of (6) and leaves the resulting classifier un-
changed [21]. 

By calculating the derivatives of such bounds with respect 
to the free parameter one can develop efficient search tech-
niques for finding high quality parameterizations, e.g. [21-
23]. However, these bounds usually depend on certain as-
sumptions, e.g. they are valid only for a specific kernel or 
require a separation of the training set without error. There-
fore, meta-heuristics as generic search procedures have been 
proposed as an alternative facilitating the use of arbitrary, 
non-differentiable model selection criteria [24, 25]. 

IV. GENETIC ALGORITHMS FOR SVM MODEL SELECTION 

A. Genetic algorithms 
GA are meta-heuristics that imitate the long-term optimi-

zation process of biological evolution for solving mathe-
matical optimization problems. They are based upon Dar-
win’s principle of the ’survival of the fittest’. Problem solu-
tions are abstract ‘individuals’ in a population. Each solution 
is evaluated by a fitness function. The fitness value ex-
presses survivability of a solution, i.e. the probability of be-
ing a member of the next population and generating ‘chil-
dren’ with similar characteristics by handing down genetic 
information via evolutionary mechanisms like reproduction, 
variation and selection, respectively. Reproduction and 
variation is achieved by mutation of genes and crossover. 
The latter combines characteristics of two solutions for de-
riving two new solutions. The coding of the problem into a 
genetic representation, e.g. the sequence of the phenotype’s 
parameters on a genotype, is crucial to the performance of 
GA. Moreover, the fitness function has great impact on per-
formance. The reader is referred to [26, 27] for more de-
tailed information regarding GA. 

B. Data driven construction of SVM kernels 
Meta-heuristics like GA have been used in conjunction 

with SVM in several ways, e.g. for feature selection [28], 
optimizing SVM’s parameters (assuming a fixed kernel) 
[29], and kernel construction [24, 25]. 

We believe that the task of feature selection resides more 
in the realms of data pre-processing than within model selec-
tion and discard it from further analysis. While GA can be 
used to tune the parameters of a specific SVM with fixed 

kernel, a data driven kernel construction is obviously more 
flexible so that we follow this approach. 

It has been shown that if K1 and K2 are kernels, we can 
derive a new valid kernel K�  by 1 2K K K= +�  and 

1 2K K K=� i , respectively [9]. Consequently, we can use any 
number of base kernels and combine them to build a com-
bined kernel. This idea has been proposed by [25, 30, 31] 
and we implement it by using the basic kernels of Table 1. 

 
TABLE 1:  

BASIC KERNELS FOR CONSTRUCTION OF COMBINED KERNEL 

Radial (Krad) ( ) ( )2
, exprad i j i jK α= − −x x x x  

Polynomial 
(Kpoly)  ( ) ( ), ( )

d

poly i j i jK α β= ⋅ +x x x x  

Sigmoidal (Ksig) ( ) ( ), tanh ( )sig i j i jK α β= ⋅ +x x x x  

Anova (Kanova) ( ) ( )( )2
, exp

d

anova i j i j
j

K α
⎛ ⎞

= −⎜ ⎟
⎝ ⎠
∑x x x - x  

Inverse multi-
quadratic (Kimq) ( ) 2 2, 1/imq i j i jK β= +x x x - x  

 
Therewith, we obtain the combined kernel K�  (9) with 

{ }; 1,..., 4j j⊗ ∈ + ⋅ ∀ = : 
3 51 2 4

1 2 3 4 .poly rad sig imq anovaK K K K K Kκ κκ κ κ= ⊗ ⊗ ⊗ ⊗�  (9) 

C. Genetic representation of SVM’s combined kernel 
In order to facilitate a data driven determination of the 

combined kernel (9) by means of GA we have to define a 
genotype encoding for the free parameters. This is accom-
plished by using five integer genes for the kernel exponents 
( )1 5,...,κ κ , four binary genes for the kernel combination 

operators ( )1 4,...,⊗ ⊗ , fifteen real valued genes for individ-

ual kernel parameters, e.g. ( ), ,dα β in Table 1, and one 
additional real valued gene for the regularization parameter. 
The overall genotype structure is shown in Fig. 2.  

 

 
Fig. 2: Genotype encoding of SVM’s combined kernel 

 
We restrict the acceptable values for kernel exponent 

genes for computational reasons. In addition, these genes are 
superficial for polynomial and anova kernels that provide a 
kernel exponent as individual kernel parameter. Conse-
quently, these genes have been set to one. 

D. GA-based model selection 
The GA-based development of SVMs is an iterative proc-

ess starting with an initial population of randomly generated 
genotypes. Subsequently, SVMs are constructed by transfer-
ring the genotype’s genetic code into a phenotype, i.e. a 
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SVM with a well defined combined kernel. After learning 
and (cross-)validation, each SVM is evaluated by the fitness 
function. Genetic operations use this quality information for 
building a new population of SVMs, which are trained and 
evaluated again. Thus, the whole learning process can be 
seen as subdivided into a microscopic cycle for learning of a 
SVM and a macroscopic evolutionary one; see Fig. 3. 
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Fig. 3: Evolution of SVM by means of GA. Decoding of genotype into 
SVM is accomplished using the relationship between (9) and Fig. 2; here 
denoted as model data. 

 
The fitness function is an important factor for evaluation 

and evolution of SVMs providing satisfactory and stable 
results in real-world applications. The fitness function 
guides the superordinated evolutionary learning process 
determining the probability that an individual can hand 
down genetic information to the subsequent population. 
Therefore, it should express the user’s objective and should 
favour SVMs with satisfactory generalization ability in order 
to select useful classifiers systematically instead of acciden-
tally. Consequently, the fitness function effectively conducts 
model selection and we can incorporate arbitrary model se-
lection criteria as fitness measure. 

Whereas the fitness function selects solutions for repro-
duction, the reproduction itself is conducted by means of 
mutation and crossover. The selection is implemented as 
tournament selection with a tournament size of two. Fur-
thermore, an elitist mechanism is applied in order to ensure 
that the best SVM is member of the next generation.  

The crossover operator is implemented as uniform cross-
over, i.e. all genes between two random points within a 
chromosome are interchanged between two genotypes repre-
senting parents for the resulting two new genotypes. Cross-
over is potentially applied to chromosomes for kernel aggre-
gation and kernel exponent, whereas mutation can be ap-
plied to all chromosomes. The actual application of a genetic 
operation depends on user-defined rates. A high rate for 
crossing over and low rate for mutation are recommended. 
We set the crossover rate to 0.7 and the mutation rate for 
one gene to 0.3; see e.g. [26, 32]. Mutation is implemented 

as a stepwise increment or decrement with specific step size 
resulting in a new value within minimum and maximum 
limits. Binary genes are mutated by flipping 0 to 1 and vice 
versa. 

V. EMPIRICAL EVALUATION OF GA-BASED MODEL 
SELECTION FOR SVM 

A. Overview 
We evaluate four data sets from the Statlog project and 

the UCI machine learning library. The data sets Australian 
credit (ac) and German credit (gc) exemplify a case of cor-
porate credit scoring, e.g. classifying if an applicant is a 
good/bad credit risk. As examples for medical diagnosis we 
consider the data sets heart-disease (hrt), and Wisconsin 
breast cancer (wbc) each of which require a classification if 
a patient suffers from a certain disease or not. All sets are 
cases of binary classification so that examples either belong 
to a class +1 or a class -1 respectively. A brief description of 
each data set’s characteristic is given in Table 2. For detailed 
information the reader is referred to [33-35]. 

 
TABLE 2:  

DATA SET CHARACTERISTICS* 
 #cases #features #class -1 #class +1 
ac 690 14 307 383 
gc 1000 20 700 300 
hrt 270 13 150 120 
wbc 683 10 239 444 
* We use the pre-processed versions of the data sets available via the 
LIBSVM homepage [35]. 

 
The data sets have been partitioned into 2/3 training set 

for model building and 1/3 test set for out-of-sample evalua-
tion. For each data set, the GA is used to construct a popula-
tion of 50 individual SVMs. The evolutionary process of 
classifier assessment and fitness based recombination is run 
for 50 generations resulting in an overall number of 2,500 
learned and evaluated SVMs per data set. 

To consider empirical model selection procedures and al-
gebraic bounds in a mutual framework we evaluated two 
different fitness criteria. In GA-1 fitness is measured by 
means of 10-fold CV balanced classification accuracy 
(bca) (10) whereas the bound (8) is used in GA-2. The bca 
is calculated as: 

1 ,
2

bca
m m
π π− +

− +

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
 (10) 

where m− denotes the number of class -1 records in the data 
set and π − the number of class -1 records that have been 
classified correctly with similar meanings for π + and m+ . 

Results for GA-1 and GA-2 are contrasted with standard 
SVMs with linear, radial and polynomial kernel. Model se-
lection for the standard SVMs is accomplished by means of 
extensive grid search, see Table 3. 
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TABLE 3:  
PARAMETER RANGE FOR GRID SEARCH WITH STANDARD SVM * 

 log( )C  d log( )α  log( )β  

Linear kernel {-2,-1,…,3} - - - 
Radial kernel {-2,-1,…,3} - {-2,-1,…,3} - 
Polynomial kernel {-2,-1,…,2} {2,3,4,5} {-1,0,1} {0,1,2} 
*All parameters except the kernel exponent d for the polynomial kernel are 
varied on log scale. A minus sign indicates that the respective parameter is 
not present for the particular kernel. 
 

B. Experimental Results 
Following the idea of GA-based SVM model selection 

one chooses the individual with maximum overall fitness for 
future use on unseen data. To simulate this scenario, we as-
sessed the performance by means of bca of the respective 
SVMs, e.g. the fittest member in the population, on the hold-
out test set. To consider dynamical aspect of the GA, like the 
evolution of fitness and test performance, we report results 
on an aggregated generation level in Table 4 for GA-1 and 
Table 5 for GA-2 respectively.  

 
TABLE 4:  

RESULTS FOR GA-1 BASED MODEL SELECTION * 
GA-1  GA Standard SVM Deviation 

  Gen. 
Best 

fitness 
bca on  

test 
Best 

fitness 
bca on 

test 
between GA and 
standard SVM

10 0.8878 0.8376  4.79% 
25 0.8903 0.8376  4.79% ac 
50 0.8903 0.8376 

0.8761 0.7993 
 4.79% 

10 0.6719 0.5752  -13.23% 
25 0.6853 0.6784  2.34% gc 
50 0.6903 0.5611 

0.6794 0.6629 
 -15.36% 

10 0.9753 0.9743  0.87% 
25 0.9758 0.9743  0.87% wbc  
50 0.9767 0.9743 

0.9750 0.9659 
 0.87% 

10 0.8592 0.7785  -2.65% 
25 0.8647 0.7810  -2.34% hrt  
50 0.8770 0.7744 

0.8611 0.7997 
 -3.16% 

* Results are provided on an aggregated generation level. That is, the fittest 
individual within the first 10, 25, and 50 generations is selected and evalu-
ated on the test set simulating a scenario where the GA is stopped after the 
respective number of iterations. We use bold letters to denote the classifier 
that performs best on test data (with lower number of iterations, if perform-
ances are equal). In addition, italic letters indicate that SVMs with a com-
bined kernel outperform standard SVM.  
 

Results for standard SVM are given for comparison pur-
pose. These have been computed using the grid search ap-
proach of Table 3 and selecting the model within maximum 
overall performance. Here, performance is defined in the 
sense of 10-fold CV bca on training data (Table 4) and 
bound (8) (Table 5) mimicking the behaviour of GA-1 and 
GA-2. 

Using the algebraic bound (8) as fitness criterion, the GA-
based SVM outperforms standard SVM on all considered 
data sets whereas it fails to find a superior model on the 
heart data set when using the empirical estimator. Similarly, 
the deviation between test performance of GA-based SVMs 
and standard SVMs appears more favorable for GA-2. How-

ever, differences between GA-1 and GA-2 in absolute per-
formance values on test data are minor so that we conclude 
that both are appropriate fitness criteria for GA.  
 

TABLE 5:  
RESULTS FOR GA-2 BASED MODEL SELECTION * 

GA-2  GA Standard SVM Deviation 

  Gen.
Best 

fitness
bca on  

test
Best 

fitness 
bca on 

test 
between GA and 
standard SVM

10 0.7957 0.8034  10.18% 
25 0.8065 0.7401  1.49% ac 
50 0.8152 0.7344 

0.7782 0.7292 
 0.71% 

10 0.6712 0.6236  6.54% 
25 0.6787 0.6192  5.79% gc 
50 0.6922 0.5480 

0.6441 0.5853 
 -6.37% 

10 0.9186 0.9694  0.50% 
25 0.9457 0.9528  -1.22% wbc  
50 0.9520 0.9444 

0.9269 0.9646 
 -2.09% 

10 0.7937 0.7810  5.54% 
25 0.7937 0.7810  5.54% hrt  
50 0.7937 0.7810 

 
0.6825 

 
0.7400 

 5.54% 
* see Table 4. 
 

Noteworthy, for both GA-1 and GA-2 we observe a trend 
to overfit the data when running for a large number of gen-
erations. Due to our elitist selection the fitness increases 
monotonically from generation to generation. Though, se-
lecting a model after 50 generations is always equal or infe-
rior, in the sense of final performance achieved on test data, 
to selecting a model in an earlier stage of the evolutionary 
process. While these differences are negligible for the medi-
cal data sets the performance drop-off is serious for ac 
(6.9% for GA-2) and gc (11.7% GA-1). To clarify on this 
issue we analyse the relationship between fitness and per-
formance on hold-out data in more detail using generaliza-
tion diagrams as shown exemplary for GA-1 on ac in Fig. 4.  
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Fig. 4: Generalization diagram for GA-1 on ac showing all individual SVMs 
over all generations ranked by their fitness (grey squares) with according 
bca on test set (black squares). Note that fitness and test performance are 
scaled differently on individual axis to improve readability. 

 
The diagram reveals that GA-1 provides excellent model 

selection capabilities for this particular data set. Individuals 
with high fitness exhibit similarly high test set performance 
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so that fitness based model selection will produce reliable 
classifiers with good generalization performance. Conduct-
ing this analysis over all data set revealed that GA-1 exceeds 
GA-2 in terms of correlation between fitness and generaliza-
tion performance on average. 

At the right side of Fig. 4 we observe a clear fitness drop-
off. The test performance reaches a constant level of 0.5. 
This is explained by the fact, that the respective classifiers 
become naïve, predicting only one class for all instances. 
We refrained from incorporating prior knowledge into the 
GA, e.g. what kernel types/parameters to avoid for a given 
data set, range of the regularization parameter, etc., striving 
for a generic model selection mechanism. Equipping the 
algorithm with maximum flexibility allowed the construc-
tion of accurate and generalizable classifiers but at the cost 
that a certain amount of the derived models become futile. 
While extensive grid search usually leads to a number of 
naïve predictors as well, we analyze the ratio of naïve SVMs 
to overall SVMs for the GA and grid search in Fig. 5 to find 
that the number of ineffective models is in fact larger for the 
GA-based approach and GA-2 in particular.  
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Fig. 5: Ratio of non-naïve models for GA-1, GA-2 and standard SVM. 
 
This analysis explains our previous finding regarding the 

superiority of GA-1 in terms of generalization ability. While 
GA-1 and GA-2 are both promising for the task of selecting 
one best model out of a large candidate list, GA-1 is superior 
for steering the process of SVM kernel construction leading 
to a larger number of suitable classifiers on average.  

VI. CONCLUSIONS 
In this paper, we developed a GA-based approach to 

automate the task of model selection for the SVM classifier. 
This involved the construction of a combined kernel and the 
tuning of all resulting parameters. Requiring an appropriate 
fitness criterion for the GA we evaluated the well known CV 
performance on training data as an empirical model selection 
criterion. On the other hand, the minimization of algebraic 
bounds is well established within the SVM community fa-
cilitating model selection without re-sampling and re-
training. Comparing these two model selection measures in 
the context of GA-based SVM parameterization we found 

that both are appropriate to choose a classifier that will gen-
eralize well to unknown data. However, model selection 
aims at finding only one classifier and from a GA perspec-
tive the empirical estimate of generalization performance is 
the better choice to guide the evolutionary process of SVM 
construction. Using the support vector bound (8) as fitness 
criterion delivered a larger number of futile classifiers de-
creasing reliability on average. To overcome this shortcom-
ing, partly present in GA-1 as well, we will develop GAs 
that incorporate prior knowledge regarding SVM kernels 
and parameters, e.g. tuning heuristics like [16], in further 
research. However, such approaches will come at the cost of 
sacrificing generality and dissociate from the appealing vi-
sion of automatic model selection. 
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