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Forecasting Seasonal Time Series with Neural Networks:
A Sensitivity Analysis of Architecture Parameters

Sven F. Crone, Rohit Dhawan

Abstract Neural Networks are widely applied in time series
forecasting. However, no consensus exists on their capability of
forecasting seasonal time series. As seasonal patterns
frequently occur in empirical time series, it is imperative to
establish their efficacy in forecasting seasonality. This paper
seeks to evaluate the usefulness of multilayer perceptrons in
forecasting time series with different forms of seasonal and
trend components. Using eight synthetic time series, we
systematically evaluate the impact of different combinations of
hidden nodes, input nodes and activation functions on the
distribution of the forecasting errors. We aim to a) establish the
sensitivity of different architectural choices for neural
networks in forecasting and b) analyze the relative accuracy of
one or multiple neural network architectures as forecasting
methods for seasonal time series. Results are presented in order
to guide future selection of network parameters. We find that
neural networks show sensitivity to selected architecture
decisions but generally provide a robust and competitive
forecasting performance on seasonal data.

I. INTRODUCTION

S EASONAL fluctuations are commonly observed in
quarterly and monthly economic time series, with

multiple overlying seasonality occurring in weekly, daily
and hourly data. As seasonality is a dominant feature in time
series [1, 2], economists have developed methodologies to
routinely deseasonalise data for modelling and forecasting.
In contrast, alternative modelling approaches using neural
networks (NN) frequently model seasonality directly to
reflect non-deterministic [3] or dynamically changing [4]
seasonal components, where static seasonal adjustments may
incur additional problems [5, 6]
NN are capable of semi-parametric, non-linear regression

that can approximate any arbitrary function [7] and
generalise the model on unseen data. Hence in theory, NN
should be able to approximate seasonal patterns directly
from the underlying data generating process. Feedforward
NNs are widely used in time series forecasting with the
Multilayer Perceptron (MLP) being most frequently applied
[8]. In forecasting with NN, even though studies using
seasonal data have advocated the use of raw data [9-11]
some studies have emphasised prior deseasonalisation [12-
14]. However, most studies choose heuristics to determine
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the MLP architecture and parameters, often based on an ad-
hoc trial-and-error approach with limited empirical evidence
and reliability [8], often making an ex post replication of the
experiments impossible. To determine all parameters in
modeling a MLP, many modeling heuristics with equally
limited validity and reliability were developed, often
proposing conflicting rules-of-thumb on how to effectively
determine the architecture of a MLP, making their
successful application appear as much an art as a science.
Input nodes, hidden nodes and activation functions are
critical factors that can significantly affect the forecasting
performance [15-17]. Consequently, the use of suboptimal
architectures may impair the validity and reliability of
experiments, and provide biased results in the discussion on
how to forecast seasonal time series with NN.

Hence, the purpose of this study is twofold: a) to
investigate the sensitivity of MLP architectural decision in
forecasting seasonal time series: with respect to input nodes,
hidden nodes and activation functions, and b) to determine
the relative accuracy of different MLP architectures in
forecasting a seasonal time series. The analysis is structured
as follows: first we introduce the synthetic time series
dataset and the experimental setup.

II. EXPERIMENTAL DESIGN

A. Experimental data
In order to establish the sensitivity of different MLP
architectures in forecasting seasonal time series we utilize a
synthetic dataset, which is common practice in time series
forecasting for model selection and evaluation [17, 18].
We use a data set of eight archetypical time series with

medium noise derived from decomposing monthly retail
sales in [19], that has been evaluated in previous
experiments [20-22] and is available for download on the
website www.neural-forecasting.com. Time series patterns
are composed of overlaying components of a general level
of the time series L, seasonality within a calendar year S,
trends due to long term level shifts T and random noise E as
a remaining error component. Through combination of the
regular patterns of linear, exponential and degressive trends
with additive or multiplicative seasonality we derive eight
synthetic time series following the archetypical patterns
motivated from Pegel' s classification framework, later
extended by Gardner to incorporate degressive trends. In
particular, we create time series following an additive
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seasonality without trend L+SA+E (SA), multiplicative
seasonality without trend but increasing with time
L+SM*t+E (SM), linear trend with additive seasonality
L+TL+SA+E (TLSA) and linear trend with multiplicative
seasonality depending on the level of the time series
L+TL*SM+E (TLSM). Similar combinations of degressive
(TD) and progressive trend (Tp) are used with additive and
multiplicative seasonality to TDSA, TDSM, TPSA and TPSM.
Each time series has additive random noise o2 = 25
following a Gaussian distribution N (o, 2 ).

Each time series consists of 228 monthly observations. To
evaluate the effect of NN parameters and determine the ex
ante accuracy of the forecasting methods, we divide each
time series sequentially into a training, validation and test
data subset of 132, 48 and 48 observations respectively.

B. Experimental Setup
We seek to evaluate a number of relevant architectural

decisions. A complete enumeration of all potential
architectural candidate models, although theoretically and
computationally feasible, is challenging and exceeds the
scope of this paper. Hence we limit our sensitivity analysis
to a relevant subset of architectural decisions that have
proven most relevant in previous analyses.
We limit our experiments to testing the sensitivity of the

forecast errors on eight different sets of input nodes using
n={3, 6, 9, 12, 13, 15, 18, 21} inputs representing different
lagged realizations of the dependent variable Yt-n in steps of
3 nodes. Considering the monthly structure of time series,
the inputs lags of 1...3, 1...6, 1...9, and 1...12 etc. input
nodes were chosen to capture possible autocorrelation
structures over a quarter, 12 year, 3/4 of a year and a full year
and longer structures in quarterly steps. The input vector of
length 1.. 13 is explicitly used with reference to previous
popular studies [23-25]. Twenty sets of hidden nodes were
used h={1, 2, ..., 20}, always using 1 to h hidden units.
Possible combinations of activation functions include the
logistic (Log), the hyperbolic tangent (TanH) and the
Identity (Id) functions for the hidden layer and for the output
layer {Log-TanH, Log-Id, TanH-Log, TanH-TanH, TanH-
Id, Id-Log, Id-TanH, Id-Id}. The number of input and
hidden nodes was chosen to encompass a search space from
2 to 301 degrees of freedom in comparison to 132 training
data observations in order to reflect recent findings that
over-parameterized MLPs seem to provide good
generalizations in electrical load forecasting [26]. The
activation functions represent all commonly used functions,
and are deemed representative. All predictions are calculated
as one-step-ahead forecasts y using one output node. Each
of the individual candidate architectures is initialized 10
times with random starting weights in the interval [-1, 1] to
account for the local search with a standard backpropagation
algorithm with a variable learning rate, starting with 0.8 and
being reduced by 1% after each epoch, without momentum

Each time series is scaled to facilitate learning speed and
convergence. In order to avoid saturation effects on the
instationary time series we scale all input and output data to
fall into the range of [-0.6, 0.6] to account for headroom,
using only the minimum and maximum for training- and
validation set [20]. The choice of scaling may interact with
the activation function, as TanH is defined in ]- 1, 1 [ while
the Logistic function is defined only in ]0, 1 [. For that
reason we later exclude the [Log-Log] combination from our

analysis. The interaction of scaling and activation function
will become evident later.
An initial full factorial experiment design created 23,400

networks per time series. However, a preliminary analysis
yielded only limited insight into modeling decisions due to
the significant noise in the results and graphs across all
architectures. Therefore we further limited the experimental
complexity by first determining a set of robust architecture
parameters on the seasonal time series SA in accordance with
a pre-experiment in [20]. Of all architectures we analyze the
top 10% of all candidates ordered by Median Absolute
Percentage Error (MdAPE) on the validation set and select
the architecture most frequently in the top percentile. This
yields a generic MLP architecture of 12 input nodes, 10
hidden nodes, the logistic activation function in the hidden
layer and the identity function in the output layer. It should
be noted that this pre-selection may bias later findings. We
then evaluate the effect of varying the number of input
nodes, number of hidden nodes or the type of activation
functions by varying only the parameters under
investigation, keeping all other parameters set to the generic
architecture. As a consequence, we train 14400 neural
networks for each of the time series, calculating a total of
115,200 neural networks for the analysis. The accuracy of
the MLPs is evaluated using the MdAPE across the 48 t+±
step ahead forecasts, which provides a more robust error

metric then the MAPE. The errors are displayed in box-plots
across 10 initializations to reveal the sensitivity of each
architecture towards forecasting errors.

All experiments were calculated using the software
Intelligent Forecaster developed by the first author. Average
computation time per MLP was below 1 second.

III. EXPERIMENTAL RESULTS

A. Input vector length
Previous studies have indicated that the choice of input
variables and hence length of the input vector is crucial to
the approximation and generalization performance of a

MLP. The number of input nodes is determined either by
heuristic trial-and-error experimentation [8] or using
statistical tools through autocorrelation analysis or spectral
analysis to identify seasonality and cycles [27]. Surprisingly,
despite using autocorrelation or spectral analysis many

authors extend the input vector of MLPs to include all lags
unto the last significant lag, in contrast to the Box-Jenkinsterm. Data is sampled in random order with replacement.
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Fig 1: Box-Plots ofMdAPE for different input nodes on eight time series with different seasonality and trends and across all time series

methodology of SARIMA modeling which would indicate
an over-parameterized model and hence increased variance
and bias [28]. Our procedure follows this simple example
and reveals the impact of the input vector length in the box-
plots of the MdAPE across all 10 initializations for each of
the eight time series SA, SM, TLSA TLSM, TDSA, TDSM, TPSA
and TPSM and a combined box-plot with errors summed
across all eight time series patterns. Box-plots may utilize
different scale of the y-axis to exemplify error distributions,
with horizontal lines indicating error steps of 0.1 in MdAPE.
As expected, the errors for basic time series patterns

without trend SA, SM decrease significantly for input lags
over 12 nodes, as the seasonal pattern requires an

autoregressive lag ofy,-11 and corresponding 12 input nodes.
However, extending the input vector beyond 12 inputs for
series SA, SM leads to only insignificantly deteriorated
performance of the MLPs over all its initializations, as can

be seen in a constant variance, minimum, maximum and
median. This indicates a robust minimization instead of an

expected over-specification. For selected time series patterns
(e.g. series with linear trend TLSA TLSM), the increase of the
input vector leads to increased variance, despite limited
increase ofmean errors.

A similar pattern becomes evident in the graphs across all
series. Different series can be approximated better across all
initializations regardless of input vector length, e.g. SA and
the series with dampened trends TDSA, TDSM, due to the

sigmoid form of the activation functions in internal
information processing. Time series with exponential trend
TPSA and TPSM lead to significantly higher errors, again with

a decrease in median error and variance to 12 inputs and an

increase in variance if the vector is further extended. The
overall pattern is also confirmed in the distribution of the
errors over all eight time series patterns, showing reduced
median errors and variance for adequate specification of the
input vector length. However, the majority of all
initialisations appear surprisingly robust against input vector
misspecification.

To summarize, MLP appear to be rather robust against
using too many input nodes and irrelevant input vector
information, once the relevant information is contained in
the input vector. However, if there is a constraint on the
number of data points available, a parsimonious modeling
approach would indicate using as few as possible inputs,
hence 12. If only a single MLP architecture was to be used,
it should use 12 input nodes, as identified in the generic
architecture.

B. Number ofhidden nodes
In most NN studies, the number of hidden nodes is
determined by ad-hoc experimentation or undisclosed rules
of the thumb [29, 30], questioning the validity and reliability
of the experiments and limiting their replicability. In
contrast, some authors have noted that the number of hidden
nodes has only limited impact on forecasting accuracy of a
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Fig 2: Box-Plots of MdAPE for different hidden nodes on eight time series with different seasonality and trends and across all time series

MLP. The impact of hidden nodes on the time series is

displayed in Fig. 2. The box plots have been scaled to the

same domain as in Fig. 1, occasionally cutting of maximum

values and upper quartiles of the distribution. As the main

objective is to allow a comparison of variance introduced by

different modeling selections, only the lower tail of the

distribution is of interest. Therefore we accept this tradeoff.

A number of distinct patterns become evident, depending

on the structure of the time series. First, it is noticeable that

the median error and error variance is different for different

time series, indicating that some series may not only be

predicted more accurately than others, but are also more

robust to model misspecification, e.g. TDSA and TDSm. All

time series show a significant increase in error magnitude

and error variance with increasing numbers of hidden nodes,

possibly indicating problems of training and convergence.

Hence the importance of parsimonious model building can

be confirmed, supporting the use of the Akaike (AIC) or

Bayesian Information Criterion (BIS) for model selection.

Many time series show best performance for a low

number of nodes, indicated by a continuously increasing

median error and increasing error variance with additional

hidden nodes, e.g. SA, TDSA and TDSm. The other series

show a pattern of continuously decreasing, almost stable and

then increasing median eirrors and error variance, e.g. Sm,

TLSA, TLSm, TpSA and TpSm. This demonstrates the need to

find an adequate number of hidden nodes for each time

series separately. Across the series, all architectures using

more than 12 hidden nodes with the generic 12 input nodes

represent the well-known problem of over-parameterized

models with more degrees of freedom than observations in

the training set. For the given set, an analysis of the average

errors over all series shows that a good and robust

performance can be achieved using 3, 5, 6 or 9 hidden

nodes, and not for overparameterised MLPs as suggested by

earlier research.

C. Choice of activation function

The activation functions in the hidden and output layer

determine the form of the linear or nonlinear processing

capabilities in the NN. The impact of all combinations is

displayed in Fig.3.

The activation function combinations of [Id-Id] were

eliminated across all graphs as they showed significantly

inferior results, the minimum error of [Id-Id] always

exceeding the maximum error of the [Log-Id] and most

other activation function candidates. The inferior

performance appears interesting, as MLPs with only linear

activation functions represent a simple linear model of an

AR(p)-process and many time series can be approximated as

linear autoregressive patterns. It must be assumed, that the

iterative computation of the learning algorithm impairs the

ability of learning with these architectures, which requires

further investigation. Also, the combination of [TanH-1d]
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Fig 3: Box-Plots ofMdAPE for different activation functions on eight time series with different seasonality and trends and across all time series

surprisingly showed significantly inferior performance, with
the minimum of all initializations exceeding the error of the
maximum of [Log-Id] and most other combinations,
distorting the box-plots on all time series. This is surprising,
as no other modeling selection, such as scaling into [-
0.6, 0.6] should impair its performance, and considering the
enthusiastic support from many authors to use only TanH
activation functions due to the increase convergence speed
[31]. Although showing competitive performance on some

time series we also excluded [Id-Log] and [Id-TanH] in the
detailed graphs of each series as a similar effect may be
achieved with a MLP without hidden layers and a single
output node, questioning the need for multiple layers.

The inferior performance of all combinations with a

logistic activation function in the output layer can be directly
attributed to the scaling of input- and output-data into the
interval of [-0.6, 0.6] which exceeds the output range of a

logistic function of [0, 1]. This becomes particularly evident
for the time series SM without trend, where most network
outputs fall in this region. While this signifies and supports
the importance of matching scaling to architecture selection
[20], it does not indicate in inferiority of the Log activation
function in the output layer. Further experiments using
scaling into an adequate range, e.g. [0.25, 0.75] would be
required to determine superiority of Log or TanH functions
and to assess the efficacy of [Log-Log].
An analysis of the other popular activation function

combinations indicate that a logistic function in the hidden
layer and an identity function in the output layer leads to
low and robust errors across different time series patterns,
and hence the best performance of the frequently used
activations functions in forecasting [32]. Interestingly, the
previously unused combination of [Log-TanH] outperforms
the [Log-Id] architectures robustly over all series. This
effect requires further investigation, but may be attributed to
the decreasing error contributions of the derivatives in
earlier layers, hence providing the motivation for combining
TanH with a robust hidden layer activation function.

IV. CONCLUSION AND FUTURE DIRECTION

We conducted a sensitivity analysis in order to investigate
the conditions under which MLPs are capable of forecasting
seasonal time series and how sensitive the forecasting
accuracy is to parameter variations. The results show a

significant impact of input vector length, number of hidden
nodes and the choice of activation function. While the input
vector length and the number hidden nodes must be
determined individually for each time series, using the
logistic activation function in the hidden layer and the
identity function in the output layer provides robust results,
although other functions show similar performance. The use

of TanH in the hidden layer and Identity in the output layer
shows discouraging performance and increased error

variance across all time series, hence requiring careful
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considerations should it be applied.
To compare across the equally scaled box plots, we can

determine a comparable sensitivity to varying the individual
parameters. The level of error and error variance introduced
by misspecifying the activation function to [TanH-Id] or
mismatching the activation function and scaling of input
variables is followed by the avoidance of larger number of
hidden nodes and the correct choice of a minimum input
vector length to include all relevant information, followed
by the selection of an adequate number of hidden nodes. To
ensure valid and reliable results, all aspects must be
considered with care, building parsimonious models with
individual input vectors and number of hidden nodes for
each time series. Once all these parameters are determined
experimentally, MLPs are capable of forecasting seasonal
time series without preprocessing.

The objective of our analysis was not to establish
superiority of a particular modeling decision, but to
investigate the conditions under which NN perform well and
are robust. The results indicate substantial room for model
mis-specification through the selection of suboptimal
choices and again raise the issue of a robust neural network
modeling methodology. The results of the sensitivity
analysis may serve only as guidance for future modeling of
seasonal time series. In order to establish NNs as a
promising alternative to statistical methods in time series
forecasting, we seek to extend the experiments to a full
factorial design using statistical significance tests of
ANOVA on multiple performance metrics including
conventional yet non-robust measures of RMSE. The use of
synthetic data provides better control of experimental
design, but does not reflect the problems of real-world, short
time series including outliers, level shifts and structural
breaks. Hence, the experiments need to be extended to
empirical datasets, such as the M-competition data, using
multiple-step-head predictions, more than one hidden layer
and multiple forecasting horizons to make fair
generalizations with statistical benchmark methods. For
future analysis, the evaluation of the naive use of 1 to n time
lags as inputs should be extended towards individual lags,
e.g. 1, 12 and 13 from autocorrelation- and spectral analysis.
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